ASCIIMath creating images

Showing posts with label Hearing Aids. Show all posts
Showing posts with label Hearing Aids. Show all posts

Monday, March 20, 2017

Publication update

This blog has been basically been inactive since last October since being a PostDoc means that there are a whole bunch other things that I am busy with.  And of course, it was winter - that means statistically, there is always someone in the family who is sick (kids bring home every germ that is going around...).

View of Kiel. Source: Johannes Barre 2006, on Wikipedia
But it is spring now!  And I have just returned from DAGA 2017 in Kiel (where we found a very nice Thai restaurant) so time to update some of my work!

First off, my colleagues in Hannover published "Customized high performance low power processor for binaural speaker localization" at ICECS 2016 in Monte Carlo, Monaco (paper on IEEE Xplore), there was the Winter plenary of Hearing4all, and at DAGA 2017, I presented "Pitch features for low-complexity online speaker tracking", and Sarina (Ph.D. student I'm co-supervising) presented "A distance measure to combine monaural and binaural auditory cues for sound source segregation", both of which can be found on my homepage.  In the pipeline is now "Real-time Implementation of a GMM-based Binaural Localization Algorithm on a VLIW-SIMD Processor" by Christopher, which has been accepted and will be presented at ICME 2017 in Hong Kong in July, and I submitted a paper ("Segregation and Linking of Speech Glimpses in Multisource Scenarios on a Hearing Aid") to EUSIPCO 2017; that one is still in review.

I was also teaching a class in the past semester ("5.04.4223 Introduction into Music Information Retrieval") which, because it's a brand new class took a crazy amount of work to prepare for - but I think the students really enjoyed it, and I saw some very good code being written for the final project.

Now back to real work (writing more papers, that is)!  (Well, there's one or two topics I'll put on the blog in the next little while, too.  Later.)

Tuesday, April 12, 2016

DAGA2016 article: Probabilistic 2D localization of sound sources using a multichannel bilateral hearing aid

Just put my DAGA 2016 article online. Link to paper.

Abstract: In the context of localization for Computational Auditory Scene Analysis (CASA), probabilistic localisation is a technique where a probability that a sound source is present is computed for each possible direction. This approach has been shown to work well with binaural signals provided the location of the sources to be localized is in front of the user and approximately on the same plane as the ears. Modern hearing aids use multiple microphones to perform array processing, and in a bilateral configuration, the extra microphones can be used by localization algorithms to not only estimate the horizontal direction (azimuth), but vertical direction (elevation) as well, thereby also resolving the front-back confusion. In this work, we present three different approaches to use Gaussian Mixture Model classifiers to localize sounds relative to a multi- microphone bilateral hearing aid. One approach is to divide a unit sphere into a nonuniform grid and assign a class to each grid point; the other two approaches estimate elevation and azimuth separately, using either a vertical-polar coordinate system or an ear- polar coordinate system. The benefits and drawbacks in terms of performance, computational complexity and memory requirements are discussed for each of these approaches.

Monday, February 8, 2016

GMM based localizer on custom ASIC model

The model interface hardware with the FPGA in-circuit emulator.
Lukas Gerlach (L) and Christopher Seifert (R) demoing their ASIC model setup, running realtime on a FPGA.

It's always nice to see one's own research code running on real actual hardware with live data rather than just having a simulation in MATLAB.  My colleagues over at the Institut für Mikroelektronische Systeme (IMS) of the Leibnitz Universität in Hannover presented a demo of their hardware at the Hearing4All winter plenary held last week in Soltau.  The code running on the hardware visible is a GMM based localizer originally written by Tobias May, but since heavily modified by myself.  The next step is that we'll write up exactly what we did to make this all work and how well it does - so look out for an article on this in the near future! It's one of the advantages of being at an intengrated cluster; at Hearing4All, pretty much everything related to hearing loss is being investigated: from basic ear physiology, to audiology, models, algorithms, clinical procedures, implants, and new ground-breaking hardware.


Tuesday, February 2, 2016

The Selective Binaural Beamformer: It's out!


After six or so months of going through the peer review gauntlet, our paper on the Selective Binaural Beamformer (or simply SBB) is finally published.  Thanks to all my coauthors (Menno, Daniel, Simon, and Steven) as well as the reviewers (especially reviewer #2, who gave very tough but important feedback) I think this became a very nice paper.  Please go ahead and read it at http://www.asp.eurasipjournals.com/content/2016/1/12 (EURASIP Journal on Advances in Signal Processing, full title "Speech enhancement for multimicrophone binaural hearing aids aiming to preserve the spatial auditory scene"): it's open access, one can read it either at the above address or download a PDF (see the right sidebar on the linked page).  Being open access, it's free and CC-A 4.0 licensed. 

The basic idea behind the algorithm is this: Normally, if using a beamforming algorithm on a binaural hearing aid, the entire auditory image will collapse to the position of the beam direction, that is ALL sound will appear (to the hearing aid user) to originate from the same location.  Various methods have been proposed to fix this - Simon Doclo in particular has done a lot of work on this topic (which is why it was so helpful to have him as coauthor).  My approach to this problem was to take the signal in the STFT domain (ie, the signal is divided into discrete short time frames and narrow frequency bins) and in each "bin" (time-frequency unit) make a decision if the target signal is dominant, or if the background noise is dominant.  In the first case, I use the beamformer output: the signal is enhanced, collapsed, but that's OK - it _should_ be coming from the target direction anyways.  In the second case, I simply use the signal as it comes from the two microphones closest to the ear canal, without processing - hence there is (almost) no difference from the "real" signal reaching the ears.  So, all the benefit of the beamformer without the nasty collapse of the auditory field!

...Well, mostly.  The tricky part is to make a good speech/noise decision (or actually a "target signal"/background noise decision).  But there's a fancy SNR estimator in there, from Adam Kuklasinski (see ref. 19 - I met him in Lisbon where he presented it at EUSIPCO), and that works pretty well.

So if this is the kind of thing that seems interesting to you, read the paper - and I will post some of the sample files (that were used during subjective testing) soonish on my personal homepage.